

Article

Phosphine Coordination Complexes of the Diphenylphosphenium Cation: A Versatile Synthetic Methodology for P–P Bond Formation

Neil Burford, Paul J. Ragogna, Robert McDonald, and Michael J. Ferguson

J. Am. Chem. Soc., **2003**, 125 (47), 14404-14410• DOI: 10.1021/ja036649w • Publication Date (Web): 04 November 2003 Downloaded from http://pubs.acs.org on March 30, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 21 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Phosphine Coordination Complexes of the Diphenylphosphenium Cation: A Versatile Synthetic Methodology for P–P Bond Formation

Neil Burford,*,[†] Paul J. Ragogna,[†] Robert McDonald,[‡] and Michael J. Ferguson[‡]

Contribution from the Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4J3 and X-ray Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2

Received June 12, 2003; E-mail: Neil.Burford@dal.ca

Abstract: A series of phosphine-diphenylphosphenium donor-acceptor cationic complexes have been synthesized and comprehensively characterized (phosphine = diphenylchlorophosphine, triphenylphosphine, trimethylphosphine, and tricyclohexylphosphine). The complexes involve homoatomic P-P coordinate bonds that are susceptible to ligand exchange reactions highlighting a versatile new synthetic method for P-P bond formation. Phosphenium complexes of 1,2-bis(diphenylphosphino)benzene and 1,2-bis(tert-butylphosphino)benzene undergo unusual rearrangements to give a "segregated" diphosphine-phosphonium cation and a cyclic di(phosphino)phosphonium cation, respectively. The rearrangement products reveal the kinetic stability of the phosphine-phosphenium bonding arrangement.

Introduction

Adducts of phosphorus(III) Lewis acids have been reported for a range of Lewis bases,1a but the homoatomic coordinate bonding imposed in examples of phosphine ligands on phosphorus(III) Lewis acceptors (e.g., 1a, referred to here as phosphine-phosphenium^{1b} cations) represents an important new development in coordination chemistry. The recent report of a stibine-stibenium salt⁴ indicates the potential for diversification of homoatomic coordination, but phosphorus complexes are more readily evaluated by virtue of ³¹P NMR spectroscopy. Indeed, cations with the general structure **1b**, first alluded to as the product of reactions between alkyl/aryl halides (R-X) and a diphosphine,5 were identified by ³¹P NMR spectroscopic studies of reaction mixtures containing chlorophosphines with AlCl₃^{3,6,7} or GaCl₃.^{3,8} Although P-E coordinate bonding [i.e., $R_2(Cl)P-ECl_3$; E = Al or Ga] is observed in some examples,⁸ preferential interaction of the Lewis acid (AlCl₃ or GaCl₃) with the chlorine center of the chlorophosphine often effects heterolytic P-Cl cleavage to give phosphenium salts.9 Consequential

- (1) (a) Burford, N.; Ragogna, P. J. J. Chem. Soc., Dalton Trans. 2002, 4307-4315. (b) Phosphine-phosphenium² 1a is the most appropriate term to describe the reactivity of the compounds, although the Lewis drawing 1b has been referred to as phosphinophosphonium¹ or diphosphonium.³
 (2) Abrams, M. B.; Scott, B. L.; Baker, R. T. Organometallics 2000, 19, 4944–
- 4956.
- (3) Shagvaleev, F. Sh.; Zykova, T. V.; Tarasova, R. I.; Sitdikova, T. Sh.; Moskva, V. V. Zh. Obshch. Khim. **1990**, 60, 1775–1779.
 (4) Althaus, H.; Breunig, H. J.; Lork, E. Chem. Commun. **1999**, 1971–1972.
 (5) Hoffmann, D.; Gruenewald, R. Chem. Ber. **1961**, 94, 186–193.
 (6) Schultz, C. W.; Parry, R. W. Inorg. Chem. **1976**, *15*, 3046–3050.
 (7) Karag, P. W., Pardy, C., Parreg, P. W., Lavas, Chew. 1976, *157*, 4040.

- (7)Kopp, R. W.; Bond, A. C.; Parry, R. W. Inorg. Chem. 1976, 15, 3042-30ÂĜ
- Burford, N.; Cameron, T. S.; LeBlanc, D. J.; Losier, P.; Sereda, S.; Wu,
 G. Organometallics 1997, 16, 4712–4717.
 Cowley, A. H.; Kemp, R. A. Chem. Rev. 1985, 85, 367–382. (8)

or coincident phosphine to phosphine nucleophilic attack is expressed as phosphine-phosphenium coordination 1a.^{2,10}

We now report the isolation and comprehensive characterization of phosphine-diphenylphosphenium (2a and 2b) salts and their utility as a source of the diphenylphosphenium cation via ligand exchange reactions to arrive at triphenylphosphinediphenylphosphenium 2b, tricyclohexylphosphine-diphenylphosphenium 2c, and trimethylphosphine-diphenylphosphenium 2d derivatives. In addition, ligand exchange reactions involving 1,2di(phosphino)benzene derivatives result in unusual rearrangements that implicate the kinetic stability of the isolated phosphine-phosphenium 1 cations with respect to the thermo-

[†] Dalhousie University.

[‡] University of Alberta.

dynamically preferred "segregated" diphosphine-phosphonium cation 3 and the cyclic di(phosphino)phosphonium cation 4.

Results and Discussion

Phosphorus centers bearing a lone pair of electrons are one of the most recognizable classical ligands. Less obvious is their potential as Lewis acids,¹ although a range of complexes have been isolated that are composed of a phosphorus(III) acceptor site with an arene,¹¹ carbene,¹² amine,^{6,13-15} imine,^{13,16,17} phosphine,^{2,8,18-22} or gallane ligand.²³ Most complexes are formed at room temperature by simple addition of the ligand to a preformed cation or by displacement of an anion (Cl or OSO_2CF_3) from phosphorus, but they represent unique examples in each case.

Lewis acidity at phosphorus is enhanced for coordinatively unsaturated (coordination number < 3) centers and by the presence of a cationic molecular charge. Nevertheless, examples of aminophosphenium 5 salts⁹ have been isolated, as the Lewis acidity is mediated by effective π -interaction between nitrogen and the coordinatively unsaturated, formally electron-deficient phosphorus center (illustrated in 5). The resonance allowable

by the π electron density of phenyl substituents in **6** is perhaps insufficient to enable isolation of the free Lewis acid, but the base-stabilized diphenylphosphenium cation is a potentially valuable synthetic moiety. A series of phosphine-diphenylphosphenium complexes have been prepared by ligand exchange, exploiting the homoatomic coordinate nature and lability of the P-P interaction.

- (10) Preliminary communication: Burford, N.; Cameron, T. S.; Ragogna, P. J.; Ocando-Mavarez, E.; Gee, M.; McDonald, R.; Wasylishen, R. E. J. Am. Chem. Soc. 2001, 123, 7947-7948.
- (11) Burford, N.; Clyburne, J. A. C.; Bakshi, P. K.; Cameron, T. S. Organo-metallics 1995, 14, 1578–1585.
 (12) Burford, N.; Cameron, T. S.; LeBlanc, D. J.; Phillips, A. D.; Concolino,
- T. E.; Lam, K. C.; Rheingold, A. L. J. Am. Chem. Soc. 2000, 122, 5413-5414
- (13) Burford, N.; Losier, P.; Phillips, A. D.; Ragogna, P. J.; Cameron, T. S. *Inorg. Chem.* **2003**, *42*, 1087–1091.
 (14) Kaukorat, T.; Neda, I.; Schmutzler, R. *Coord. Chem. Rev.* **1994**, *137*, 53–
- (15) Burford, N.; Losier, P.; Bakshi, P. K.; Cameron, T. S. Chem. Commun.
- 1996, 307-308 (16) Bouhadir, G.; Reed, R. W.; Réau, R.; Bertrand, G. Heteroat. Chem. 1995,
- 6 371-375
- (17) Burford, N.; Cameron, T. S.; Robertson, K. N.; Phillips, A. D.; Jenkins, H. A. Chem. Commun. 2000, 2087–2088.

Table 1.	³¹ P{ ¹ H}	NMR	Data f	for	Derivatives	of 2	, 3 ,	and	4	and
Related S	Species									

	δ (ppm) ³¹ P{ ¹ H}		$J_{\rm PP}{}^{d,e}$	(Hz)	
complex	rt (soln)	CP-MAS	rt (soln)	CP-MAS	reference
2aGaCl ₄	78	b	а	b	this work10
2bOSO ₂ CF ₃	15	13	а	350	this work ¹⁰
2b GaCl ₄	-10 13	-22 15	340	323	this work ^{10,30}
Ph ₂ PPPh ₂	-12 - 15	-17			31
Ph ₃ P Ph ₄ P ⁺	$^{-5}_{\sim 20^{f}}$				31 31
2c OSO ₂ CF ₃	$25 \\ -21$	31 - 21	361	372	this work
2dOSO ₂ CF ₃	$15 \\ -23$	$17 \\ -29$	289	281	this work
3 GaCl ₄	23 -7	с	26^{e} 190 ^d	С	this work
4OSO ₂ CF ₃	-21 25 18	С	190, ^{<i>d</i>} 26 ^{<i>e</i>} 321	С	this work
7AlCl ₄	30 -174		502		20
8aAlCl ₄	23 -28		358		26
9OSO ₂ CF ₃	139 		504		2
10AlCl ₄	317 20		455		28
11OSO ₂ CF ₃	20 a	71	а	405	19
12 BPh ₄	334 25	1	384		21

^a Not observed. ^b Not measured. ^c Not resolved. ^{d 1}J_{PP} ^{e 3}J_{PP} ^f This chemical shift can vary depending on the solvent and counterion.

A 2:1 stoichiometric reaction mixture of Ph₂PCl with GaCl₃ at room temperature shows a single product in the ${}^{31}P{}^{1}H$ NMR spectra that has been isolated and comprehensively characterized as 2aGaCl₄ (Table 1). Reaction mixtures of 2aGaCl₄ with Ph₃P show a singlet at $\delta = 82$ ppm in the ³¹P{¹H} NMR spectra assigned to Ph₂PCl and two doublets (Table 1) assigned to **2b**GaCl₄, that has also been isolated and comprehensively characterized. The corresponding trifluoromethanesulfonate salt, **2b**OSO₂CF₃ has been isolated in high yield from the reaction of Ph₂PCl, Ph₃P, and Me₃SiOSO₂CF₃. Identical ³¹P{¹H} NMR spectra are observed for the analogous mixture of Ph₂PCl, Ph₃P, and GaCl₃ suggesting that salts of 2b engage in minimal cation/ anion interaction in solution.

The triphenylphosphine-diphenylphosphenium trifluoromethanesulfonate 2bOSO₂CF₃ represents a valuable synthetic source of diphenylphosphenium. Reactions with the more basic phosphines Cy₃P and Me₃P give 2cOSO₂CF₃ and 2dOSO₂CF₃, respectively (Table 1). ³¹P{¹H} NMR spectra of these reaction mixtures show quantitative release of Ph₃P ($\delta = -5$ ppm), and both salts have been isolated and characterized. The facile interchange between derivatives of 2 by means of phosphine

⁽¹⁸⁾ Alder, R. W.; Read, D. Coord. Chem. Rev. 1998, 176, 113-133.

⁽¹⁹⁾ Burford, N.; Cameron, T. S.; Clyburne, J. A. C.; Eichele, K.; Robertson, K. N.; Sereda, S.; Wasylishen, R. E.; Whitla, W. A. Inorg. Chem. 1996, 35 5460-5467

⁽²⁰⁾ Schmidpeter, A.; Lochschmidt, S.; Sheldrick, W. S. Angew. Chem., Int. Ed. Engl. 1985, 24, 226-227

⁽²¹⁾ Romanenko, V. D.; Rudzevich, V. L.; Rusanov, E. B.; Chernega, A. N.; Senio, A.; Sotiropoulos, J. M.; Pfister-Guillouzo, G.; Sanchez, M. Chem. Commun. 1995, 1383-1385.

⁽²²⁾ Burford, N.; LeBlanc, D. J. *Inorg. Chem.* **1999**, *38*, 2248–2249.
(23) Burford, N.; Ragogna, P. J.; Robertson, K. N.; Cameron, T. S.; Hardman, N. J.; Power, P. P. J. Am. Chem. Soc. **2002**, *124*, 382–383.

Table 2. Crystal Data for Derivatives of 2, 3, and 4

	2aGaCl ₄	2bOSO ₂ CF ₃	2bGaCl ₄	$2cOSO_2CF_3$	$2dOSO_2CF_3$	3GaCl ₄ •0.5CH ₂ Cl ₂	4OSO ₂ CF ₃	
empirical formula	$C_{24}H_{20}Cl_5Ga_1P_2$	$C_{31}H_{25}F_3O_3P_2S_1\\$	$C_{30}H_{25}Cl_4Ga_1P_2$	$C_{31}H_{43}F_3O_3P_2S_1\\$	$C_{16}H_{19}F_3O_3P_2S_1\\$	$C_{42}H_{34}Cl_4Ga_1P_3$	$C_{27}H_{32}F_3O_3P_3S_1$	
formula weight	617.35	596.51	659.01	614.65	410.31	885.48	586.50	
crystal system	orthorhombic	triclinic	monoclinic	orthorhombic	monoclinic	monoclinic	triclinic	
space group	Pbca	P1	C2/c	$Pna2_1$	$P2_1/n$	$P2_1/n$	P1	
a (Å)	18.482(6)	10.474(3)	24.656(3)	18.934(3)	11.569(3)	9.881(1)	10.039(2)	
b (Å)	27.662(8)	11.002(3)	9.818(4)	10.451(2)	8.265(2)	14.605(1)	10.638(2)	
<i>c</i> (Å)	10.744(5)	14.140(4)	25.714(2)	15.711(2)	19.965(5)	28.467(3)	10.648(2)	
α (deg)	90	78.083(5)	90	90	90	90	102.735(3)	
β (deg)	90	73.302(5)	103.076(7)	90	97.214(5)	91.502(2)	107.407(3)	
γ (deg)	90	68.632(5)	90	90	90	90	100.374(3)	
$V(Å^3)$	5493(3)	1421.5(7)	6063(2)	3108.8(8)	1893.9(8)	4106.7(7)	1404.2(4)	
Ζ	8	2	8	4	4	4	2	
$D_{\rm C} ({\rm mg}~{\rm m}^{-3})$	1.493	1.394	1.444	1.313	1.439	1.432	1.387	
radiation, λ (Å)	Cu Ka	Μο Κα	Cu Ka	Μο Κα	Μο Κα	Μο Κα	Μο Κα	
	(1.54178)	(0.71071)	(1.54178)	(0.71071)	(0.71071)	(0.71071)	(0.71071)	
diffractometer	Rigaku AFC5R	Bruker	Rigaku AFC5R	Bruker	Bruker	Bruker	Bruker	
		PLATFORM/		PLATFORM/	PLATFORM/	PLATFORM/	PLATFORM/	
		SMART 1000		SMART 1000	SMART 1000	SMART 1000	SMART 1000	
		CCD		CCD	CCD	CCD	CCD	
temp (K)	296(1)	193(2)	296(1)	193(2)	193(2)	193(2)	193(2)	
$R(I > 2\sigma(I))$	0.0512 ^a	0.0703 ^a	0.049^{b}	0.0410^{a}	0.0956 ^a	0.0829^{a}	0.0508^{a}	
$wR (I \ge 2\sigma(I))$	0.1329 ^a	0.1723 ^a	0.056^{b}	0.0850^{a}	0.2418^{a}	0.2272^{a}	0.1179 ^a	
goodness-of-fit S	0.971 ^a	1.024 ^a	1.33 ^b	1.020 ^a	1.038 ^a	1.024 ^{<i>a</i>}	1.024 ^{<i>a</i>}	

 ${}^{a} R(F [I > 2\sigma(I)]) = \Sigma ||F_{o}| - |F_{c}||\Sigma |F_{o}|; wR(F^{2} [all data]) = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w(F_{o}^{2})^{2}]^{1/2}; S(all data) = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2} / (n - p)]^{1/2} (n = no. of data; p = no. of parameters varied, w = 1/[\sigma^{2}(F_{o}^{2}) + (aP)^{2} + bP] where P = (F_{o}^{2} + 2F_{c}^{2})/3 and a and b are constants suggested by the refinement program [see Supporting Information]). {}^{b} R(F [I > 3\sigma(I)]) = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|, wR(F[I > 3\sigma(I)]) = [\Sigma w(|F_{o}| - |F_{c}|)^{2} / \Sigma w|F_{o}^{2}|]^{1/2}; S(I > 3\sigma(I)) = [\Sigma w(|F_{o}| - |F_{c}|)^{2} / (n - p)]^{1/2} (o = no. of observed data; p = no. of parameters varied, w = 4F_{o}^{2} / \sigma^{2} (F_{o}^{2})).$

ligand exchange reactions validates the designation of homoatomic P-P coordinate bonding in these compounds. The quantitative nature of the reactions and the structural simplicity of the cations highlight P-P coordination as a versatile and efficient new synthetic procedure for P-P bond formation.

The bifunctional diphosphosphines 1,2-bis(diphenylphosphino) benzene (dppb) and 1,2-bis(di-*tert*-butylphosphino)benzene (dbpb) react quantitatively (as shown by ³¹P{¹H} NMR spectroscopy) with **2a**GaCl₄ and **2b**OSO₂CF₃, respectively. However, salts isolated from these reactions contain cations that are rearrangement products of the predicted diphosphine–phosphenium complexes. The "segregated" diphosphine-phosphonium cation **3** is formed in the reaction of dppb with **2a**GaCl₄, while the bicyclic di(phosphino)phosphonium cation **4** is formed in the reaction of dbpb with **2b**OSO₂CF₃.

Views of the formula units for **2a**GaCl₄, **2b**GaCl₄, **2b**OSO₂CF₃, **2c**OSO₂CF₃, **2d**OSO₂CF₃, **3**GaCl₄, and **4**OSO₂CF₃ determined by X-ray crystallography (Table 2) are shown in Figures 1–7. P–P internuclear distances and angles at the Lewis acceptor center (phosphenium) are given in Table 3, with comparative data for related compounds **7–12**, which includes examples of bis(phosphino)–phosphenium (**7**,^{20,24,25} **8**^{26,27}), phosphine–diaminophosphenium (**9**),² phosphine–phospha-alkenium (**10**),²⁸ phosphine–phosphadiazonium (**11**),¹⁹ and phosphine–diphosphadiazonium (**12**)²¹ cations.

All derivatives of 2 adopt a staggered conformation about the P-P bond in the solid state, with a distorted tetrahedral

- (24) Lochschmidt, S.; Schmidpeter, A. Z. Naturforsch. 1985, 40b, 765-773.
 (25) Schmidpeter, A.; Lochschmidt, S.; Sheldrick, W. S. Angew. Chem., Int. Ed. Engl. 1982, 21, 63-64.
- Ed. Engl. 1902, 21, 05-04.
 (26) Schmidpeter, A.; Lochschmidt, S.; Karaghiosoff, K.; Sheldrick, W. S. J. Chem. Soc., Chem. Commun. 1985, 1447-1448.
- (27) Schmidpeter, A.; Lochschmidt, S. Angew. Chem., Int. Ed. Engl. 1986, 25, 253–254.
- (28) David, G.; Niecke, E.; Nieger, M.; Radseck, J.; Schoeller, W. W. J. Am. Chem. Soc. 1994, 116, 2191–2192.

Mes* = 2,4,6-tri-t-butyphenyl

geometry for the tetracoordinate phosphorus centers and a distinctly pyramidal geometry with standard phosphine-like bond angles (90–105°) for the tricoordinate phosphorus centers. Other than the anomalously long P–P interaction in **11**OSO₂CF₃, the series of P–P bonded compounds exhibit a striking uniformity of structural features, despite differences in molecular charge, connectivity, or coordination number at either phosphorus center. In this context, any of the electronic features of the homoatomic coordinate P–P bond that may be distinct from P–P covalent bonds in compounds such as Ph₂PPPh₂²⁹ do not express themselves in the metrical parameters.

⁽²⁹⁾ Dashti-Mommertz, A.; Neumüller, B. Z. Anorg. Allg. Chem. 1999, 625, 954–960.

Figure 2. View of the solid-state structure of **2b**GaCl₄. Ellipsoids are 50% probability; hydrogen atoms have been omitted for clarity.

NMR spectroscopic data for derivatives of **2** are listed in Table 1 and are compared with established data for Ph₃P, Ph₂-PPPh₂, and Ph₄P⁺. Resolvated pure salts of **2a** and **2b** give broad ³¹P{¹H} NMR signals at room temperature in contrast to the reaction mixture for **2b**GaCl₄, which shows a poorly resolved AB pattern. An AB pattern is observed for **2b**OSO₂CF₃ at 193 K with a typical ¹J_{PP} value. Solid state ³¹P{¹H} CP-MAS NMR data for **2b**OSO₂CF₃, **2c**OSO₂CF₃, and **2d**OSO₂CF₃ are consistent with the data obtained for solutions.

An ABX pattern is observed for 3GaCl_4 in the ${}^{31}\text{P}{}^{1}\text{H}$ solution NMR spectrum with normal ${}^{1}J_{\text{PP}}$ and ${}^{3}J_{\text{PP}}$ values. The ${}^{31}\text{P}{}^{1}\text{H}$ A₂B spin system for $4\text{OSO}_2\text{CF}_3$ is second order at three fields (250, 400, 500 MHz) and has been favorably simulated, as illustrated in Figure 8. Consistent with the spectroscopic and structural data above, the ${}^{31}\text{P}$ { $}^{1}\text{H}$ coupled} NMR spectrum of $4\text{OSO}_2\text{CF}_3$ shows no evidence of ${}^{1}J_{\text{PH}}$, indicating that both 'Buphosphino centers of the starting diphosphine have been dehydrogenated as a result of reaction with $2\text{bOSO}_2\text{CF}_3$. The

Figure 3. View of the solid-state structure of **2b**OSO₂CF₃. Ellipsoids are 50% probability; hydrogen atoms have been omitted for clarity.

Figure 4. View of the solid-state structure of **2cOSO**₂CF₃. Ellipsoids are 50% probability; hydrogen atoms have been omitted for clarity.

Figure 5. View of the solid-state structure of **2d**OSO₂CF₃. Ellipsoids are 50% probability; hydrogen atoms have been omitted for clarity.

 ${}^{1}J_{\text{PP}}$ and ${}^{3}J_{\text{PP}}$ coupling is not resolved in the solid state spectra due to the inherently broad signals.

Cation **3** is composed of a tetraarylphosphonium center and a tetraryldiphosphine "segregated" by a bridging benzo unit. We envision the production of **3** to first involve displacement of Ph₂PCl from **2a** by one phosphine site of dppb to give **13**, followed by intramolecular phenyl transfer from the resulting tetracoordinate phosphonium to the second phosphine via a

⁽³⁰⁾ Gee, M.; Wasylishen, R. E.; Ragogna, P. J.; Burford, N.; McDonald, R. *Can. J. Chem.* **2002**, *80*, 1488–1500.

⁽³¹⁾ Kosolapoff, G. M.; Maier, L. Organic Phosphorus Compounds; Wiley-Interscience: Toronto, 1972.

Figure 6. View of the solid-state structure of **3**GaCl₄. Ellipsoids are 50% probability, hydrogen atoms have been omitted for clarity.

Figure 7. View of the solid-state structure of 4OSO₂CF₃. Ellipsoids are 50% probability; hydrogen atoms have been omitted for clarity.

Table 3. P-P Distances (Å) and Sum of the Bond Angles (deg) at the Lewis Acceptor Phosphorus Center

		∠'s at Lewis	
	P–P (Å)	acceptor	reference
2aGaCl ₄	2.205(4)	311.7	this work10
$2bOSO_2CF_3$	2.230(1)	305.3	this work ¹⁰
2bGaCl ₄	2.220(6)	311.7	this work10
2cOSO ₂ CF ₃	2.220(1)	305.5	this work
$2dOSO_2CF_3$	2.187(2)	310.1	this work
$3GaCl_4$	2.243(2)		this work
4OSO ₂ CF ₃	2.199(1)		this work
	2.193(1)		
7AlCl ₄	2.137(6)		20
8bAlCl ₄	2.133(6)	291.2	26
9OSO ₂ CF ₃	2.3065(9)	301.2	2
10AlCl ₄	2.267(2)		28
11OSO ₂ CF ₃	2.625(2)		19
$12BPh_4$	2.206(1)		21
Ph ₂ PPPh ₂	2.217(1)		29

bridging Wheland intermediate **14** (Scheme 1). Such facile isomerism of the phosphine-phosphenium **13** (a derivative of **2**) to the "segregated" diphosphine-phosphonium **3** demonstrates the relative thermodynamic instability of the P-P bonded phosphine-phosphenium-phosphine **13** given a route to a more favorable bonding alternative. Although the isolated P-P bonded phosphine-phosphenium derivatives (2) are perhaps only kinetically stable, thermodynamically favored alternative structures are not apparent.

The structure of **4** is reminiscent of the proposed cyclic intermediate 14 in the formation of 3 but is the result of an elaborate rearrangement from the combination of Ph₂P⁺ and dbpb that is the equivalent of a dehydrogenation. Quantitative [shown in the ³¹P{¹H} NMR spectrum of the reaction mixture] coincidental formation of Ph₃P ($\delta = -5$ ppm), Ph₂PH ($\delta =$ -40 ppm), and $[Ph_3PH]^+$ ($\delta = 2$ ppm) is rationalized in the proposed mechanism presented in Scheme 2. Hydride abstraction from dbpb is envisaged to effect release of Ph₃P to give Ph₂PH and a phosphenium cation 15 that is stabilized by conjugation onto the phosphinobenzene moiety. Subsequent formation of a phosphine-phosphenium complex 16 involving Ph₂PH as a ligand gives access to an ortho-diphosphinophosphinobenzene 17, through deprotonation by Ph₃P. Reaction of 17 with a second equivalent of phosphine-phosphenium 2b removes the second hydride to enable cyclization of the diphosphine-phosphenium to give 4, through intramolecular P-P coordination.

Conclusions

A series of phosphine—phosphenium cations have been synthesized by a versatile ligand displacement reaction at Ph_2P^+ , which behaves as a Lewis acceptor despite the presence of a lone pair of electrons at the phosphorus center. Homoatomic P-P coordination is demonstrated as an efficient new synthetic method for P-P bond formation. Complexes of ortho-substituted di(phosphino)benzenes on Ph_2P^+ undergo rapid rearrangement to give the "segregated" diphosphine—phosphonium cation **3** and the cyclic di(phosphino)phosphonium cation **4**.

Experimental Section

General. All manipulations were carried out in an N2 filled Innovative Technologies drybox. All solvents were distilled prior to use and dispensed in the drybox. CH₂Cl₂ was dried at reflux over CaH₂, P2O5, and again over CaH2. Hexane was dried at reflux over K, and Et₂O was dried at reflux over Na/benzophenone. Ph₃P, Ph₂PCl, GaCl₃, Me₃SiOSO₂CF₃, and Me₃P (1.0 M in hexane) were purchased from Aldrich Chemical Co., 1,2-bis(tert-butylphosphino)benzene was purchased from Quantum Design, and Cy₃P was purchased from Strem. All reagents were used as received without further purification. IR spectra were collected on a Bruker VECTOR 22 FT-IR using Nujol mulls and are reported with ranked intensities in parentheses. Solution NMR data were collected on a Bruker AC-250 NMR spectrometer at room temperature unless otherwise indicated. Chemical shifts are reported in ppm relative to a reference standard [85% H₃PO₄ (³¹P)]. Simulation of the ³¹P NMR spectrum of the second-order A₂B spin system was done using g-NMR Version 4.0 by Cherwell Scientific. Crystals were mounted inside glass capillaries (<1.0 mm od) and flame sealed or mounted under oil (Paratone) and placed in a cold stream of N2. X-ray diffraction data (Table 2) were collected on a Rigaku AFC5R diffractometer equipped with a rotating anode source using graphitemonochromated Cu K α ($\lambda = 1.5478$ Å) radiation (**2a**GaCl₄, **2b**GaCl₄) or on a Bruker PLATFORM diffractometer with a sealed tube generator and a SMART 1000 CCD detector (2bOSO₂CF₃, 2bOSO₂CF₃, 3GaCl₄·0.5CH₂Cl₂, 4OSO₂CF₃) using graphite-monochromated Mo Ka $(\lambda = 0.710\ 73\ \text{\AA})$ radiation.

2aGaCl₄. GaCl₃ (0.9 g, 5.2 mmol) in CH₂Cl₂ (10 mL) was added to Ph₂PCl (2.3 g, 10 mmol) and stirred for 1 h at rt. Removal of solvent in vacuo gave a white solid, which was washed with C_6H_6 . Anal. Calcd

Figure 8. Experimental and simulated ³¹P NMR spectra of 4OSO₂CF₃ in solution.

(Found): C, 46.7 (46.8); H, 3.3 (3.3). Crystals were grown using liquid/ liquid diffusion from CH₂Cl₂/hexane; 2.5 g, 77%; mp 103-105 °C; IR (cm⁻¹) 367(4), 381(1), 496(7), 532(9), 681(5), 691(8), 745(3), 752-(6), 1105(10), 1436(2).

2bOSO₂CF₃. Ph₂PCl (1.0 g, 4.5 mmol) was added to Me₃SiOSO₂-CF₃ (1.2 g, 5.4 mmol 20% excess) in CH₂Cl₂ (20 mL). The mixture was stirred for 45 min at rt, added to Ph₃P (1.5 g, 5.4 mmol), and stirred for 45 min. Removal of solvent in vacuo gave a white solid, which was redissolved in CH₂Cl₂, and slow solvent evaporation gave clear, cubelike crystals; 2.14 g, 80%; mp 163–164 °C. Anal. Calcd (Found): C, 62.4 (62.2); H, 4.2 (4.0). IR (cm⁻¹) 488(9), 636(2), 693-(5), 741(6), 1029(4), 1124(8), 1150(7), 1222(10), 1260(1), 1439(3).

2bGaCl₄. Ph₃P (0.25 g, 0.97 mmol) in CH₂Cl₂ (15 mL) was added to a solution of $[Ph_2PCl-PPh_2][GaCl_4]$ (0.60 g, 0.97 mmol) in CH₂Cl₂ (20 mL) and stirred for 1 h at rt. Removal of solvent in vacuo gave a

white solid; 0.56 g, 87.6%; mp 153–155 °C. Anal. Calcd (Found): C, 54. 7 (54.5); H, 3.8 (3.8). IR (cm⁻¹) 374(3), 489(7), 503(6), 550(9), 690(5), 720(4), 746(2), 1101(8), 1439(1); crystals were obtained using liquid/liquid diffusion from $CH_2Cl_2/hexane$.

2cOSO₂CF₃. A solution of Cy₃P (0.06 g, 0.20 mmol) in CH₂Cl₂ (1 mL) was added dropwise (5 min) to a solution of [Ph₃P-PPh₂][OSO₂-CF₃] (0.12 g, 0.20 mmol) in CH₂Cl₂ (3 mL). The reaction mixture was stirred for 1 h at rt. The volume was reduced to 2 mL in vacuo, and Et₂O was added (5 mL) to give a white precipitate. Crystals were obtained using liquid/liquid diffusion from CH₂Cl₂/hexane; 0.10 g, 77%; mp 117–118 °C. Anal. Calcd (Found): C, 60.6 (58.0); H, 7.1 (6.5); IR (cm⁻¹): 635(6), 722(9), 748(7), 1029(5), 1175(4), 1219(8), 1262-(3), 1301(10), 1377(2), 1458(1).

2dOSO₂CF₃. Me₃P (1.0 M in hexanes, 0.10 mL, 0.10 mmol) was added to a stirred solution of [Ph₃P-PPh₂][OSO₂CF₃] (0.06 g, 0.10

Scheme 2. Proposed Mechanism for the Formation of 4

mmol) in CH₂Cl₂ (3 mL) for 1 h at rt. The volume was reduced in vacuo, and the addition of pentane gave a white powder; 0.03 g, 76%; mp 57–58 °C. Anal. Calcd (Found): C, 46.8 (50.6); H, 4.6 (4.7). Crystals were obtained using vapor diffusion (CH₂Cl₂/Et₂O) at -30 °C; IR (cm⁻¹) 741(8), 961(10), 1030(5), 1151(7), 1167(9), 1256(3), 1280(4), 1300(6), 1378(2), 1467(1).

3GaCl4. A solution of bis(1,2-diphenylphosphino)benzene (dpbz) (0.05 g, 0.11 mmol) in CH₂Cl₂ (2 mL) was added to a solution of [Ph₂-PCl–PPh₂][GaCl₄] (0.11 mmol) in CH₂Cl₂ (3 mL), giving a yellow reaction mixture, which was stirred for 12 h at rt. Reduction of solvent volume (0.5 mL) in vacuo and addition of *n*-pentane (5 mL) gave a yellow precipitate; 0.049 g, 55%; mp126–128 °C. Anal. Calcd (Found): C, 59.1 (58.0); H, 4.1 (3.9). Yellow, rectangular prism crystals were obtained using vapor diffusion (CH₂Cl₂/Et₂O); IR (cm⁻¹) 374(7), 534(8), 686(6), 719(3), 732(4), 1107(4), 1177(2), 1506(1), 2341(10), 2360(9).

40SO₂CF₃. 1,2-Bis(*tert*-butylphosphino)benzene (0.025 g, 0.10 mmol) was added to a stirred solution of $[Ph_3P-PPh_2][OSO_2CF_3]$ (0.12 g, 0.20 mmol) in CH₂Cl₂ (3 mL) for 12 h at rt. The volume was reduced in vacuo, and the addition of pentane gave a white powder; 0.07 g, 63%; mp 164–166 °C. Anal. Calcd (Found): C, 55.3 (55.5); H, 5.5 (4.7). Crystals were obtained using vapor diffusion (CH₂Cl₂/Et₂O); IR

 (cm^{-1}) 637(8), 751(9), 1032(7), 1149(4), 1222(10), 1250(2), 1280(3), 177(6), 1466(1).

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada, the Killam Foundation, the Canada Research Chairs Program, the Canada Foundation for Innovation, the Nova Scotia Research and Innovation Trust Fund, and the Walter C. Summer Foundation for funding, the Atlantic Region Magnetic Resonance Centre for use of instrumentation, Dr. M. Lumsden for helpful discussion and spectral simulation, Dr. C. L. B. Macdonald and B.D. Ellis at the University of Windsor for obtaining 500 MHz NMR spectra, Drs. T. S. Cameron and K. N. Robertson for X-ray crystallographic studies of compounds 2aGaCl₄ and 2bGaCl₄, and M. D. Eelman and Dr. J. A. Pincock for their insight on reaction mechanisms.

Supporting Information Available: Crystallographic information files (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA036649W